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The dynamic phase behavior of a classical Heisenberg spin system with a bilinear exchange anisotropy in a
planar thin film geometry has been investigated by Monte Carlo simulations using different forms for the
stochastic dynamics. In simulations of the dynamic phase transition(DPT) in films subject to a pulsed oscil-
latory external field with competing surface fields, both Glauber and Metropolis dynamics show a continuous
DPT. But while the field amplitude dependence of the DPT is similar in both cases, the transition region for the
DPT as a function of temperature is more extended with Metropolis dynamics. The difference arises from a
decoupling of the surface and bulk responses of the film near the dynamic phase transition with Metropolis
dynamics that is not evident for Glauber dynamics.
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I. INTRODUCTION

In Monte Carlo simulations the algorithm incorporates a
stochastic dynamics that provides a rule whereby the system
changes from one state to another. There are many different
possible types of stochastic dynamics that can involve either
single or many particle moves and thereby be either local or
nonlocal in character. In equilibrium Monte Carlo simula-
tions a number of different dynamics can lead to the same
Boltzmann distribution of states once the simulation has
reached equilibrium. The conditions of ergodicity and de-
tailed balance are sufficient to ensure that the equilibrium
distribution of states sampled by the algorithm is the correct
Boltzmann distribution[1]. Thus one is free to choose any
algorithm that obeys ergodicity and detailed balance and one
should get the same result in equilibrium Monte Carlo simu-
lations. So the computationally most efficient algorithm is
usually selected.

However, the fundamental difficulty that makes nonequi-
librium Monte Carlo simulations harder than their equilib-
rium counterparts is that there is a limited freedom in choos-
ing the dynamics of the Monte Carlo algorithm[1]. The
conditions of ergodicity and detailed balance say nothing
about the way in which the system comes to equilibrium and
different choices for the stochastic dynamics will give rise to
different results. Thus the dynamic must be chosen on physi-
cal grounds rather than simple computational efficiency and
for cluster algorithms the relation of the Monte Carlo process
to a realistic dynamical process is unclear[2]. In some cases,
when simulating a real material, it is possible to use our
understanding of that material to estimate the correct form
for the stochastic dynamics. However in other cases the de-
tailed form of the dynamics is nota priori clear and macro-
scopic properties must be used to make some inference as to
the form of the stochastic dynamics. Thus it is important to
understand the nonequilibrium statistical mechanics of
model systems with well-characterized stochastic dynamics.

In recent papers[3–5], Rikvold and Kolesik have shown
that the interface structure and velocity in a kinetic Ising
ferromagnet driven by an applied field depends strongly on
the details of the stochastic dynamics. Here we shall inves-

tigate the role of the type of stochastic dynamics on the dy-
namic phase transition(DPT) observed in a thin ferromag-
netic film with competing surface fields where the dynamic
variation of the magnetization in the film is the result of
interface motion within the film[6–8].

II. MODEL

The system under consideration here is a three-
dimensional thin planar film of finite thicknessD with com-
peting surface fields subject to a time dependent oscillatory
external fieldHstd with Hamiltonian
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whereSi =sSi
x,Si

y,Si
zd is a unit vector representing theith spin

and the notationki , jl indicates that the sum is restricted to
nearest-neighbor pairs of spins.J is a coupling constant char-
acterizing the magnitude of the exchange interaction andL
characterizes the strength of the bilinear exchange aniso-
tropy. In this paper we have focused on a ferromagnetic
sJ.0d system with a weak bilinear exchange anisotropy of
L=0.1, where the system is intermediate in character be-
tween the limiting Ising-likesL=1d and HeisenbergsL=0d
models[9]. The competing surface fields have a magnitude
h=−0.55 and the oscillatory driving fieldHstd is a square
wave of amplitudeH0 and angular frequencyv [7].

The model film is a simple lattice of sizeL3L3D, in
units of the lattice spacing. Periodic boundary conditions are
applied in thex and y directions. Free boundary conditions
are applied in thez direction which is of finite thicknessD. A
film thickness D=12 was used throughout which corre-
sponds to the crossover regime between wall and bulk domi-
nated behavior[10]. The results reported here are for lattices
with L=32. No significant differences were found for lattices
with L=64 and 128 at noncritical values ofH0 and T. The
full finite-size scaling study required to determine critical
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properties of the DPT is beyond the scope of this work.
Monte Carlo simulations were performed using a random

spin update scheme. Trial configurations were generated by
the rotation of a randomly selected spin through a random
angular displacement about one of thex,y,z axes chosen at
random [11,12]. A sequence of sizeL3L3D trials com-
prises one Monte Carlo step per spin(MCSS), the unit of
time in these simulations. In all the simulations reported
here, the period of the pulsed oscillatory external field was
fixed at 240 MCSS and the initial spin configuration was a
ferromagnetically ordered state of the spins withSi = +1 for
all i.

III. GLAUBER VS METROPOLIS DYNAMICS

Previous studies[6–8] of hysteresis and the dynamic
phase transition in anisotropic Heisenberg ferromagnets
driven by an oscillatory applied external field have used a
dynamic Monte Carlo simulation method with Metropolis
dynamics. In Metropolis dynamics the transition probability
associated with the trial rotation of theith spin Si →Si8 is
WMsSi →Si8d=mins1,e−bDEd where DE is the total energy
change. Here, however, we use Glauber dynamics, which is
defined by the transition probability WGsSi →Si8d
=se−bDEd / s1+e−bDEd. Both Glauber and Metropolis dynam-
ics obey ergodicity and detailed balance[1]. In the Monte
Carlo method no physical time is associated with each trial
configuration. The unit of time in the simulation is the Monte
Carlo step per spin and one MCSS simply corresponds to a
series of random modifications of all the degrees of freedom
of the system. If the time rate by which a real system can
modify all of its degrees of freedom is known by some in-
dependent argument, then the number of MCSS can be con-
verted into a real time unit[13,14]. However, in doing this
one must be sure that the form of the stochastic dynamics
used in the Monte Carlo simulation is appropriate, particu-
larly if the dynamic response of the system depends strongly
on the details of the stochastic dynamics. Note that both
Glauber and Metropolis dynamics obey ergodicity and de-
tailed balance. Furthermore, ifubDEu@1 thenWM <WG. The
only significant difference occurs forubDEu!1, when
WM .WG. Thus Metropolis dynamics is always more likely
to accept a trial spin rotation that involves a small change in
energy.

A. Temperature dependence of the order parameter

The order parameter for the DPT is the period averaged
magnetization over a complete cycle of the pulsed field,Q
[7]. Figure 1 shows the mean period averaged magnetization
kQl as a function of the reduced temperature,T* =kBT/J, for
a pulsed oscillatory field amplitudeH0=0.3. The quantity is
determined from a sequence of full cycles of the oscillatory
field with initial transients discarded. The error bars in the
figure correspond to a standard deviation in the measured
values and are visible only when they exceed the size of the
symbol. Lines joining the symbols in the figure are solely to
guide the eye.

The figure shows a change in the dynamic order param-
eter for Glauber(solid circles) and Metropolis(open circles)
dynamics asT* increases. The low temperature state with
kQlÞ0 corresponds to a dynamically ordered phase, while at
high temperatures a dynamically disordered phase withkQl
=0 is observed. The results for the two types of stochastic
dynamics are the same at low temperaturessT* ,0.7d and
higher temperatures above the DPTsT* .1.0d. However, for
intermediate temperatures in the vicinity of the DPT, the
form of kQl as a function ofT* for the two types of dynamics
is different. The DPT for Metropolis dynamics appears to be
continuous with a steady decrease in the dynamic order pa-
rameter as the DPT is approached. Note that fluctuations in
the dynamic order parameter close to the DPT are large.
Furthermore the fluctuations inkQl for the Metropolis dy-
namics increase steadily withT* as the DPT is approached.
This is in marked contrast to the same system with Glauber
dynamics. The fluctuations inkQl for Glauber dynamics re-
main small with increasingT* in the dynamically ordered
phase, but following the sharp decrease inkQl at T* =0.88,
there is a marked increase in the size of the fluctuations in
kQl. The most striking aspect of the figure is that while the
qualitative form of the DPT is markedly different between
Glauber and Metropolis dynamics, the locations of the DPT
for Glauber and Metropolis dynamics are not so very differ-
ent.

Large fluctuations inQ close to the DPT arise from com-
petition between the static surface fields and the pulsed os-
cillatory external field in the system. Further information on
the form of the DPT follows from the mean period averaged
layer magnetizationkQnl across the film. Figure 2 shows the
temperature dependence of the order parameter for thenth
layer, Qn, across the whole film forH0=0.3 with Glauber

FIG. 1. Mean period averaged magnetizationkQl as a function
of the temperatureT* with a fixed value of the pulsed oscillatory
external field amplitude ofH0=0.3 for Glauber(solid circles) and
Metropolis (open circles) dynamics.
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dynamics. The figure shows that the DPT in each layer of the
film occurs at almost the same temperature. The shape of
kQnl for Glauber dynamics is notably different from the cor-
responding result for Metropolis dynamics[7] where the
critical temperature for the DPT in the surface layers is dif-

ferent from that for the DPT in the bulk of the film. While
DPT with Metropolis dynamics is clearly continuous, this is
not immediately clear for the system with Glauber dynamics
where the DPT is very sharp.

In order to verify the continuous nature of the DPT for
Glauber dynamics as a function ofT* , the order parameter
distributions for thenth layer,PsQnd, across the whole film
are obtained. Figure 3 showsPsQnd for H0=0.3 at (a) T*

=0.87, (b) T* =0.875, and(c) T* =0.88. In both the dynami-
cally ordered phase atT* =0.87 and the dynamically disor-
dered phase atT* =0.88, the order parameter distributions for
each layerPsQnd display a single peak structure. Close to the
transition atT* =0.875,PsQnd has a double peak structure in
some layers. This shows that the DPT is continuous. None of
the layers in the figure shows evidence of a three-peak struc-
ture with peaks at ±Q and Q=0 that would indicate a dis-
continuous DPT. All the layers of the film show the one- or
two-peak structure consistent with a continuous DPT, the
single peak being a result of the surface fields hindering
magnetization reversal.

B. Field amplitude dependence of the order parameter

Figure 4 shows the mean period averaged magnetization
kQl as a function of the pulsed oscillatory external field am-
plitude H0 at a fixed temperature ofT* =0.6. It is immedi-
ately apparent from the figure that the qualitative form ofkQl
for Glauber dynamics(solid circles) is very similar to that for
Metropolis dynamics(open circles) as a function ofH0. For
both types of dynamics at a fixed temperature the DPT is
clearly continuous andkQl vanishes at a value ofH0<0.71.

IV. CONCLUSION

The different forms for the dynamic phase transition for
the system with Glauber and Metropolis dynamics result

FIG. 2. Mean period averaged magnetizations for thenth layer,
kQnl, across the whole film for Glauber dynamics as a function of
T* with a fixed value of the pulsed oscillatory external field ampli-
tude ofH0=0.3.

FIG. 3. Distributions of the layer order parameterPsQnd for
Glauber dynamics with a fixed value of the pulsed oscillatory ex-
ternal field amplitude ofH0=0.3 at temperaturesT*=(a) 0.87, (b)
0.875, and(c) 0.88.

FIG. 4. Mean period averaged magnetizationkQl as a function
of the pulsed oscillatory external field amplitudeH0 at a fixed value
of the temperature ofT* =0.6 for Glauber(solid circles) and Me-
tropolis (open circles) dynamics.
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from the different values for the transition probabilities of
the two dynamics in trial spin rotations that involve only
small changes in the total energy. In Metropolis dynamics,
any trial single spin rotation that results in a reduction of the
total energy is accepted. But for Glauber dynamics there is a
(small) probability that a lower energy trial configuration
will be rejected. Thus high energy reverse magnetization
states can persist to higher temperatures in the film with
Glauber dynamics than with Metropolis dynamics. As a re-
sult, dynamically ordered states can persist to higher tem-
peratures in systems with Glauber dynamics.

For a givenH0, the apparent sudden change in the dy-
namic order parameter for the film at the DPT with Glauber
dynamics is a result of the change in the layer dynamic order
parameter occurring at the same temperature for all the lay-
ers of the film. In contrast, for Metropolis dynamics[7] the
system shows a DPT in the surface layers of the film that
occurs at a lower temperature to the DPT in the bulk of the
film. This decoupling of the surface and bulk responses of
the film to the applied oscillatory field gives rise to a mixed
state of the film in which dynamically ordered surfaces co-
exist with a dynamically disordered bulk. This mixed state of

the film persists over a range of temperature and gives rise to
an extended region of large fluctuations of the dynamic order
parameter for the film. However, while the DPT for the film
is much sharper for Glauber dynamics than with Metropolis
dynamics, the DPT is continuous in both cases. There is
evidence for a discontinuous DPT as a function of the ex-
change anisotropy in the Hamiltonian, but for fixedL the
DPT is continuous[8].

The choice of the transition probability for Glauber dy-
namics has a physical origin in the interaction of the spin
with a heat bath, whereas, in Metropolis dynamics the tran-
sition probability has a mathematical origin, being generated
simply from the Metropolis criterion for equilibrium Monte
Carlo simulations. This work shows that while both types of
dynamics give continuous DPTs at similar locations, the
mixed state that is observed over an extended temperature
range near the DPT with Metropolis dynamics is not ob-
served for Glauber dynamics. Thus caution is required in
choosing the form of the stochastic dynamics in nonequilib-
rium Monte Carlo simulations to ensure that the physics of
the system is being correctly modeled.
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